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Abstract
We present some techniques of constraining gravitational models using the covariant consistency analysis.
We will then use the techniques to discuss the integrability conditions of classes of shear-free perfect-
fluid cosmological models in both f (R) and scalar-tensor gravitational theories. Among other interesting
results, we will show the existence of so-called anti-Newtonian universes and universes that rotate and
expand simultaneously, both of which are in contrast to the predictions of General Relativity.
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1. INTRODUCTION
f (R) models are a sub-class of 4th-order theories of gravitation, with an action of the form

A = 1
2

∫
d4x
√
−g [ f (R) + 2Lm] (1)

• Simplest generalizations to GR

• An extra degree of freedom

• Cosmological viability

– observational constraints

– theoretical constraints: analysis of the integrability conditions on the field equations

The f (R)-generalized Einstein field equations can be given by

f ′Gab = Tm
ab +

1
2 ( f − R f ′)gab +∇b∇a f ′ − gab∇c∇c f ′ (2)

• Generic viability conditions on f :

– To ensure gravity remains attractive
f ′ > 0 ∀R

– For stable matter-dominated and high-curvature cosmological regimes (nontachyonic scalaron)

f ′′ > 0 ∀R� f ′′

– GR-like law of gravitation in the early universe (BBN, CMB constraints)

lim
R→∞

f (R)
R

= 1⇒ f ′ < 1

– At recent epochs
| f ′ − 1| � 1

1.1. Covariant thermodynamics
The matter-energy content of the Universe is specified by

Tab = (µ + p)uaub + pgab + q(aub) + πab
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• Curvature and total fluid thermodynamics

µR =
1
f ′

[
1
2
(R f ′ − f )−Θ f ′′Ṙ + f ′′∇̃2R

]
pR =

1
f ′

[
1
2
( f − R f ′) + f ′′R̈ + f ′′′Ṙ2

+
2
3

(
Θ f ′′Ṙ− f ′′∇̃2R− f ′′′∇̃aR∇̃aR

)]
qR

a = − 1
f ′

[
f ′′′Ṙ∇̃aR + f ′′∇̃aṘ− 1

3
f ′′Θ∇̃aR

]
πR

ab =
1
f ′
[

f ′′∇̃〈a∇̃b〉R + f ′′′∇̃〈aR∇̃b〉R− σabṘ f ′′
]

µ ≡ µm

f ′
+ µR , p ≡ pm

f ′
+ pR , qa ≡

qm
a
f ′

+ qR
a , πab ≡

πm
ab

f ′
+ πR

ab

The covariant derivative of the timelike vector ua is decomposed into its irreducible parts as

∇aub = −Aaub +
1
3 habΘ + σab + εabcωc

Aa ≡ u̇a , Θ ≡ ∇̃aua , σab ≡ ∇̃〈aub〉 , ωa ≡ εabc∇̃buc

The trace-free part of the Riemann tensor defines the Weyl conformal curvature tensor

Cab
cd = Rab

cd − 2g[a [cRb]
d] +

R
3

g[a [cgb]
d]

• Split into its symmetric, trace-free “electric” and “magnetic” parts, Eab and Hab respectively given by

Eab ≡ Cagbhuguh, Hab ≡ 1
2 ηae

ghCghbdueud

Eab represents the free gravitational field (tidal forces); Hab is responsible for gravitational waves, no Newtonian analogue

1.2. Evolution equations
• 1 + 3 covariant splitting of the Bianchi and Ricci identities

∇[aRbc]d
e = 0 , (∇a∇b −∇b∇a)uc = Rabc

dud

result in propagation and constraint equations

• The evolution equations uniquely determine the covariant variables on some initial hypersurface S0 at t0:

µ̇m = −(µm + pm)Θ− ∇̃aqm
a − 2Aaqa

m − σa
b πb

a(m)

µ̇R = −(µR + pR)Θ +
µm f ′′

f ′2
Ṙ− ∇̃aqR

a − 2Aaqa
R − σa

b πb
a(R)

Θ̇ = − 1
3 Θ2 − 1

2 (µ + 3p) + ∇̃a Aa − Aa Aa − σabσab + 2ωaωa

q̇m
a = − 4

3 Θqm
a − (µm + pm)Aa − ∇̃a pm − ∇̃bπm

ab

− σb
a qm

b − Abπm
ab − εabcωbqc

m

2
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1.3. Evolution equations. . .

q̇R
a = − 4

3 ΘqR
a +

µm f ′′

f ′2
∇̃aR− ∇̃a pR − ∇̃bπR

ab − σb
a qR

b

− (µR + pR)Aa − AbπR
ab − εabcωbqc

R

ω̇a = − 2
3 Θωa − 1

2 εabc∇̃b Ac + σb
a ωb (3)

σ̇ab = − 2
3 Θσab − Eab +

1
2 πab + ∇̃〈a Ab〉 + A〈a Ab〉 − σc

〈 aσb〉c

−ω〈aωb〉 (4)

Ėab +
1
2 π̇ab = εcd〈a∇̃c Hd

b〉 −Θ
(

Eab +
1
6 πab

)
− 1

2 (µ + p) σab − 1
2 ∇̃〈aqb〉

+ 3σ
〈c
a

(
Eb〉c − 1

6 πb〉c
)
− A〈aqb〉 + εcd〈a

[
2Ac Hd

b〉 + ωc(Ed
b〉 +

1
2 πd

b〉)
]

(5)

Ḣab = −ΘHab − εcd〈a∇̃cEd
b〉 +

1
2 εcd〈a∇̃cπd

b〉

+ 3σ
〈c
a Hb〉c +

3
2 ω〈aqb〉 − εcd〈a

[
2AcEd

b〉 −
1
2 σc

b〉q
d −ωc Hd

b〉

]
(6)

1.4. Constraints
• Restrict the initial data to be specified; must remain satisfied on any hypersurface St for all t

(C1)a := ∇̃bσab − 2
3 ∇̃aΘ + εabc

(
∇̃bωc + 2Abωc

)
+ qa = 0

(C2)ab := εcd(a∇̃cσb)
d + ∇̃〈aωb〉 − Hab − 2A〈aωb〉 = 0 (7)

(C3)a := ∇̃b Hab + (µ + p)ωa + εabc

[
1
2 ∇̃

bqc + σbd

(
Ed

c +
1
2 πd

c

)]
+ 3ωb

(
Eab − 1

6 πab
)
= 0

(C4)a := ∇̃bEab +
1
2 ∇̃

bπab − 1
3 ∇̃aµ + 1

3 Θqa

− 1
2 σb

a qb − 3ωb Hab − εabc[σ
bd Hc

d −
3
2 ωbqc] = 0

(C5) := ∇̃aωa − Aaωa = 0 (8)

• The Gauß-Codazzi equations are given by

R̃ab + σ̇〈ab〉 + Θσab − ∇̃〈a Ab〉 − A〈a Ab〉 − πab −
1
3

(
2µ− 2

3
Θ2
)

hab = 0 (9)

2. SIMULTANEOUSLY ROTATING AND EXPANDING MODELS
Classic GR result (Gödel, Ellis): shear-free perfect-fluid cosmological models (homogeneous, inhomogeneous) cannot rotate and
expand simultaneously, i.e.,

Θωa = 0

• Turning off the shear from the propagation equations results in a new constraint equation

(C6)ab := Eab − 1
2 πab − ∇̃〈a Ab〉 = 0

• Demanding consistent spatial (curl) and temporal (time derivative) propagations results in [1]

Θωa
{ [

(1− w)P
3

R̃ +
(1 + w)

f ′
(3w + 5) f ′ + 4 f ′′Q

6 f ′
µm

]
+

Z
P

[
(

1 + w
f ′

)µm

]}
= 0 (10)

3
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2.1. Flat, vacuum solutions
In the above result, we have defined

Θ ≡ 3
ȧ
a

, q ≡ − äa
ȧ2 , j ≡

...
a a2

ȧ3 , s ≡ a3

ȧ4
d4a
dt4

Q ≡ 1
3

Θ2(j− q− 2) + R̃

P ≡ f ′′

f ′
Q +

3w
2

Z ≡ 2
3

(
f ′′′

f ′
− (

f ′′

f ′
)2
)

Q2 +
f ′′

9 f ′
(
(4 + 5q + j + jq + s)Θ2 + 6R̃

)
• It follows that we must have either ωaΘ = 0 or the expression in the curly brackets of Eq. (10) must vanish

• Notice that if the 3-curvature vanishes R̃, then the GR result can always be avoided for vacuum universes (µm = 0), i.e., a
shear-free, spatially flat vacuum universe in any f (R) theory can rotate and expand simultaneously in the linearized regime

2.2. Non-vacuum, Milne solutions
• For the non-vacuum case, it can be shown that using flat Milne universe solutions

µm =
µ0

a3(1+w)
, Θ̇ = − 1

3 Θ2, R = 2
3 Θ2 , a(R) =

1√
R

into the Friedmann equation
1
3

Θ2 =
1
f ′

[
µm +

R f ′ − f
2

−ΘṘ f ′′
]

,

one gets

−R2 d2 f (R)
dR2 +

f (R)
2
− µ0

a(R)3(1+w)
= 0 ,

which has the following general solution:

f (R) = C1R
1+
√

3
2 + C2R

1−
√

3
2 − 4µ0

1 + 12w + 9w2 R
3(1+w)

2 (11)

If we consider the Rn toy model, the term in the curly brackets of Eq. (10) reduces to

(1 + w)µm

6 f ′
[3w + 9− 4n] = 0 (12)

• Comparing solutions (12) and the particular solution of Eq. (11), we get w = 1 if µm 6= 0, i.e., for a stiff fluid in R3 gravity,
there exists a flat Milne-universe solution which can rotate and expand simultaneously at the level of linearised perturbation
theory

• This suggests that there are situations where linearized fourth-order gravity shares properties with Newtonian theory not
valid in GR

3. IRROTATIONAL MODELS
For classes of non-rotating fluid models, the vorticity vanishes: ωa = 0 will have the evolution equation (3) turned into a new
constraint

(C6∗)a := εabc∇̃b Ac = 0 =⇒ Aa = ∇̃aψ

for some scalar ψ. Taking the curl and temporal derivative of this constraint results in the mathematical identities(
εabc∇̃b Ac

).
= 0

curl(curl(Aa)) = ∇̃a

(
∇̃2ψ

)
− ∇̃2 (∇̃aψ

)
+ 2

3

(
µ− 1

3 Θ2
)
∇̃aψ = 0

• Generic irrotational fluid models in f (R) gravity are self-consistent [2]!
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3.1. Dust models
On the other hand, if we specialize to dust models

w = 0 = pm , qm
a = 0 = Aa , πm

ab = 0 ,

then some interesting integrability conditions arise. For example, in shear-free dust models, i.e., σab = 0, Eq. (4) turns into a new
constraint

(C6d)ab := Eab − 1
2 πR

ab = 0 (13)

• Unlike in GR, Eab does not vanish because πR
ab is nonzero, but Hab does vanish, leading to a modified constraint from Eq. (6),

which obviously is an identity:
(C7d)ab := εcd〈a∇̃cEd

b〉 −
1
2 εcd〈a∇̃cπd d

b〉 = 0

• Since qR
a becomes irrotational, it can be shown that for some scalar field φ and some spatially constant scalar C:

qR
a = ∇̃aφ , φ = 2

3 Θ + C (14)

An interesting consequence of the above result is the integrability condition

2
3 f ′∇̃aΘ +

(
f ′′′Ṙ− 1

3 Θ f ′′
)
∇̃aR + f ′′∇̃aṘ = 0

• In the GR limit, we get a spatially homogeneous expansion

∇̃aΘ = 0

• Propagating the new constraint above results in the new equation

π̇R
ab +

2
3 ΘπR

ab − 1
2 ∇̃〈aqR

b〉 = 0 ,

implying that irrotational shear-free dust spacetimes governed by f (R) gravitational physics evolve consistently if[
3
2

(
f ′′′

f ′
− f ′′2

f ′2

)
Ṙ− Θ f ′′

6 f ′

]
∇̃〈a∇̃b〉R +

3 f ′′
2 f ′ ∇̃〈a∇̃b〉Ṙ = 0 (15)

• The GR limit of the above equation is an identity since the left-hand side vanishes identically

Now since for any scalar field ψ,

εcda∇̃c∇̃〈b∇̃d〉ψ = εcda∇̃c∇̃(b∇̃d)ψ = εcda∇̃c∇̃b∇̃dψ = 0

taking the curl of Eq. (15) results in another identity:[
3
2

(
f ′′′

f ′
− f ′′2

f ′2

)
Ṙ− Θ f ′′

6 f ′

]
εcda∇̃c∇̃〈b∇̃d〉R +

3 f ′′
2 f ′ εcda∇̃c∇̃〈b∇̃d〉Ṙ = 0 (16)

• This suggests that all irrotational shear-free dust spacetimes in f (R)-gravity are self-consistent

• For the conformally flat metric, i.e., if Eab = 0 as well, the following new linearized constraints emerge:

∇̃〈aqR
b〉 = 0 =

(
Ṙ f ′′′ − 1

3 Θ f ′′
)
∇̃〈a∇̃b〉R + f ′′∇̃〈a∇̃b〉Ṙ

πR
ab = 0 = f ′′∇̃〈a∇̃b〉R

3.2. Dust spacetimes with div Hab = 0
3.3. Irrotational dust spacetimes with div Hab = 0
A necessary condition for the propagation of gravitational waves is the vanishing of the divergence of a non-zero Hab.

• Prescribing this condition on the field equations results in a generalized constraint of the irrotational qR
a term we saw a few

slides back, Eq. (14):
∇̃aφ = 2

3 ∇̃aΘ− ∇̃bσab (17)

• A subclass of such models, called “purely radiative” dust spacetimes, is a divergence-free Eab. Such models in f (R) gravity
are constrained further as

∇̃aµm + f ′∇̃aµR + f ′ΘqR
a −

3 f ′
2 ∇̃

bπR
ab = 0 (18)

– In GR purely radiative irrotational dust spacetimes are spatially homogeneous:

∇̃aµm = 0 (19)
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3.4. Non-expanding spacetimes
Here we want to explore the (in)consistencies that emerge assuming theoretical cases of a non-expanding spacetime, i.e., Θ = 0.

• One can immediately conclude, for example, that a new constraint arises from the Raychaudhuri equation:

(C6s) := ∇̃a Aa − 1
2 f ′ (1 + 3w)µm − 1

2 (µR + 3pR) = 0 (20)

For dust models (Aa = 0 = qm
a ), this would mean a vanishing active gravitational mass: µ + 3p = 0. Furthermore, the

conservation equation would guarantee that µd(t) = const, and hence that µR + 3pR = const, as well. Combining this with
the trace equation

3 f ′′R̈ + 3Ṙ2 f ′′′ + 3ΘṘ f ′′ − 3 f ′′∇̃2R− R f ′ + 2 f − µm + 3pm = 0

we conclude that
f − 2 f ′′∇̃2R = const (21)

• Any non-rotating, non-expanding dust spacetime in f (R) cosmology should have a gravitational Lagrangian that satisfies
Eq. (21)

4. QUASI-NEWTONIAN MODELS
• Irrotational dust universes with purely gravito-magnetic Weyl tensor −→ quasi-Newtonian universes, characterized by

pm = 0 , Aa = 0 , qm
a = µmva , πm

ab = 0 , ωa = 0 , Hab = 0

– potential models for the description of gravitational collapse and late-time cosmic structure

• Choose a comoving 4-velocity ũa such that

ũa = ua + va , vaua = 0 , vava << 1 ,

where va is the non-relativistic (“peculiar”) velocity and vanishes in the background

For this class of models, it can be shown that

1
2

εabc∇̃b Ac = 0 =⇒ Aa ≡ ∇̃aΦ

Eab −
1
2

πab − ∇̃〈a Ab〉 = 0

For any fourth-order gravity model in which the anisotropic pressure πab can be given in terms of a scalar potential Ψ as [3]

πab = ∇̃〈a∇̃b〉Ψ

• Two generally independent integrability conditions for generic fluid models exist:

∇̃<a∇̃b>

(
Φ̇ +

1
3

Θ + Ψ̇
)
+

(
Φ̇ +

1
3

Θ + Ψ̇
)
∇̃<a∇̃b>Φ = 0 (22)

6∇̃aΦ̈ + 6Θ∇̃aΦ̇−
(

2µ− 2
3

Θ2
)
∇̃aΦ + 6∇̃aΨ̈ + 6Θ∇̃aΨ̇

−
(

2µ− 2
3

Θ2
)
∇̃aΨ− 2∇̃a(∇̃2Ψ)− 3∇̃a p = 0 (23)

• Identically the same in f (R) models, due to the linearized form of πR
ab in Eq. (3)

• Modified Poisson equation

∇̃2Φ =
1
2
(µ + 3p)−

[
3
(
Φ̈ + Ψ̈

)
+
(
Φ̇ + Ψ̇

)
Θ
]

• Velocity perturbations are scale-independent, as in GR, but matter density fluctuations are scale-dependent

• Over regions of space-time where the Ricci curvature scalar is a slowly varying function of space and time

– f (R) (and its derivatives) are associated Laguerre polynomials

– The peculiar velocity, 4-acceleration, total cosmic heat flux and anisotropic stress can be analytically calculated explicitly

6
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5. ANTI-NEWTONIAN MODELS
• Irrotational dust universes with purely gravito-magnetic Weyl tensor −→ anti-Newtonian universes, characterized by

pm = 0 , Aa = 0 , qm
a = 0 , πm

ab = 0 , ωa = 0 , Eab = 0

– Farthest possible models from Newtonian universes

• In GR, anti-Newtonian universes suffer from severe integrability conditions, no known anti-Newtonian spacetimes that are
linearized perturbations of Friedman-Lemaı̂tre-Robertson-Walker (FLRW) universes

• In fourth-order gravitational theories, anti-Newtonian models exist, subject to the integrability condition [4]

∇̃2qR
a − ∇̃a(∇̃bqR

b ) + R̃qR
a +

4 f ′′

f ′2
µmΘ∇̃aR = 0 (24)

• For flat universes (K = 0 = R̃) this holds only if
f ′′µmΘ∇̃aR = 0 (25)

– Impose µm 6= 0 and f ′′ 6= 0. For a consistently evolving set of constraints in the flat, anti-Newtonian spacetimes, either
one of the following conditions must hold:

Θ = 0 −→ static

∇̃aR = 0 −→ homogeneous

• Closed & open universes (K = ±1): any dust solution of[
f ′′µmΘ

f ′
∓ 2

a2

(
Ṙ f ′′′ − 1

3 Θ f ′′
)]
∇̃aR∓ 2 f ′′

a2 ∇̃aṘ = 0 (26)

with f ′′ 6= 0 is an anti-Newtonian solution

6. SHEAR-FREE ANISOTROPIC MODELS
• In orthogonal models with irrotational and non-accelerated fluid flows without heat fluxes:

Tm
ab = µmuaub + pmhab + πm

ab , ωa = 0 = Aa

• From causal relativistic thermodynamical relationships for imperfect fluids, the anisotropic pressure is known to evolve
according to

τπ̇ab + πab = −λσab (27)

– τ and λ are relaxation and viscosity parameters

• For negligible τ and positive constant λ; Ansatz for the equation of state:

πab = −λσab (28)

– Valid near thermal equilibrium, such as in the very early stages of the Universe

• Eqs. (3) imply that we can rewrite (28) as [5]

πm
ab + f ′′∇̃〈a∇̃b〉R + f ′′′∇̃〈aR∇̃b〉R = σab

(
Ṙ f ′′ − λ f ′

)
(29)

• For a general case of vanishing shear tensor during the entire cosmic evolution, one can see from Eq. (29) that

πm
ab = − f ′′∇̃〈a∇̃b〉R− f ′′′∇̃〈aR∇̃b〉R

• The Gauß-Codazzi equations (9) reduce to

R̃ab − 1
3 R̃hab = πab =

1
f ′
(

πm
ab + f ′′∇̃〈a∇̃b〉R + f ′′′∇̃〈aR∇̃b〉R

)
Even if the matter anisotropic stress vanishes, no constant-curvature geometrie are guaranteed and hence no necessarily
FLRW universes

7
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• Unlike in GR, if we allow the matter anisotropic pressure to be nonzero despite a vanishing shear, constant-curvature models
are allowed provided

f ′′∇̃〈a∇̃b〉R + f ′′′∇̃〈aR∇̃b〉R = 0

• One can see the tidal effect on the anisotropic stresses by dropping the shear terms of Eq. (4), obtaining the equation

πab = 2Eab (30)

The anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other, a
necessary and sufficient condition for the shear to remain zero if initially vanishing

• For nonzero, but very small (second-order) shear, one can show that Eq. (4) can be approximated by

σ̇ab ≈ − 2
3 Θσab =⇒

(
σ2
).
≈ − 4

3 Θσ2 ,

showing that the shear decays with expansion. Within the class of orthogonal f (R) models, small perturbations of shear are
damped, i.e., that these models are stable if expanding

• For shear-free orthogonal models satisfying Eq. (30), Eq. (6) reduces to an identity:

εcd〈a∇̃cEd
b〉 =

1
2 εcd〈a∇̃cπd

b〉

• It is straightforward to show using Eqs.(5) and (8) that

Ėab = − 2
3 ΘEab − 1

4 ∇̃〈aqR
b〉

∇̃bEab = 1
6

(
∇̃aµ− 1

3 ΘqR
a

)
(31)

• Defining E2 ≡ EabEab, and rewriting Eq. (31) as(
E2
).

= − 4
3 ΘE2 − 1

8

(
∇̃〈aqR

b〉E
ab + ∇̃〈aqb〉

R Eab

)
(32)

shows the decay of the electric part of the Weyl tensor and the anisotropic stress tensor with expansion

• Since the generalized Friedman equation does not guarantee a positive total energy density,

Θ2 = 3
(

µ− 1
2 R̃
)

,

it is not straightforward to comment on the asymptotic isotropization of expanding shear-free anisotropic models for the
different values of the spatial curvature

• This is in contrast to the GR result where, for example, expanding shear-free models which exhibit negative spatial curvature
asymptotically approach isotropy

7. CONCLUSIONS
• In summary, we have

– looked at the consistency relations of linearized perturbations of FLRW universes arising as a result of imposing special
restrictions to the field equations in f (R) gravity

– shown that, contrary to the results of GR, simultaneously rotating and expanding spacetimes exist in modified gravity

– explored different classes of non-rotating fluid models in f (R) gravity, and their corresponding GR implications

– briefly discussed the existence of integrability conditions for Newtonian-like and anti-Newtonian cosmological models

– studied the f (R)-gravity dynamics of shear-free anisotropic cosmologies vis-à-vis general relativistic physics

• The important point here is that, even at the theoretical level, if the exact dynamical evolution of the Universe is known, one
can, in principle, constrain the gravitational action for the underlying physics
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